Black Holes

What Are They?
Black holes are the evolutionary endpoints of stars at least 10 to 15 times as massive as the Sun. If a star that massive or larger undergoes a supernova explosion, it may leave behind a fairly massive burned out stellar remnant. With no outward forces to oppose gravitational forces, the remnant will collapse in on itself. The star eventually collapses to the point of zero volume and infinite density, creating what is known as a " singularity ". As the density increases, the path of light rays emitted from the star are bent and eventually wrapped irrevocably around the star. Any emitted photons are trapped into an orbit by the intense gravitational field; they will never leave it. Because no light escapes after the star reaches this infinite density, it is called a black hole.

But contrary to popular myth, a black hole is not a cosmic vacuum cleaner. If our Sun was suddenly replaced with a black hole of the same mass, the earth's orbit around the Sun would be unchanged. (Of course the Earth's temperature would change, and there would be no solar wind or solar magnetic storms affecting us.) To be "sucked" into a black hole, one has to cross inside the Schwarzschild radius. At this radius, the escape speed is equal to the speed of light, and once light passes through, even it cannot escape.

The Schwarzschild radius can be calculated using the equation for escape speed.
vesc = (2GM/R)1/2
For photons, or objects with no mass, we can substitute c (the speed of light) for Vesc and find the Schwarzschild radius, R, to be
R = 2GM/c2

If the Sun was replaced with a black hole that had the same mass as the Sun, the Schwarzschild radius would be 3 km (compared to the Sun's radius of nearly 700,000 km). Hence the Earth would have to get very close to get sucked into a black hole at the center of our solar system.

If We Can't See Them, How Do We Know They're There?



Since black holes are small (only a few to a few tens of kilometers in size), and light that would allow us to see them cannot escape, a black hole floating alone in space would be hard, if not impossible, to see. For instance, the photograph above shows the optical companion star to the (invisible) black hole candidate Cyg X-1.

However, if a black hole passes through a cloud of interstellar matter, or is close to another "normal" star, the black hole can accrete matter into itself. As the matter falls or is pulled towards the black hole, it gains kinetic energy, heats up and is squeezed by tidal forces. The heating ionizes the atoms, and when the atoms reach a few million degrees Kelvin, they emit X-rays. The X-rays are sent off into space before the matter crosses the Schwarzschild radius and crashes into the singularity. Thus we can see this X-ray emission.

Binary X-ray sources are also places to find strong black hole candidates. A companion star is a perfect source of infalling material for a black hole. A binary system also allows the calculation of the black hole candidate's mass. Once the mass is found, it can be determined if the candidate is a neutron star or a black hole, since neutron stars always have masses of about 1.5 times the mass of the sun. Another sign of the presence of a black hole is random variation of emitted X-rays. The infalling matter that emits X-rays does not fall into the black hole at a steady rate, but rather more sporadically, which causes an observable variation in X-ray intensity. Additionally, if the X-ray source is in a binary system, the X-rays will be periodically cut off as the source is eclipsed by the companion star. When looking for black hole candidates, all these things are taken into account. Many X-ray satellites have scanned the skies for X-ray sources that might be possible black hole candidates.

Cygnus X-1 is the longest known of the black hole candidates. It is a highly variable and irregular source with X-ray emission that flickers in hundredths of a second. An object cannot flicker faster than the time required for light to travel across the object. In a hundredth of a second, light travels 3000 kilometers. This is one fourth of Earth's diameter! So the region emitting the x-rays around Cygnus X-1 is rather small. Its companion star, HDE 226868 is a B0 supergiant with a surface temperature of about 31,000 K. Spectroscopic observations show that the spectral lines of HDE 226868 shift back and forth with a period of 5.6 days. From the mass-luminosity relation, the mass of this supergiant is calculated as 30 times the mass of the Sun. Cyg X-1 must have a mass of about 7 solar masses or else it would not exert enough gravitational pull to cause the wobble in the spectral lines of HDE 226868. Since 7 solar masses is too large to be a white dwarf or neutron star, it must be a black hole.

However, there are arguments against Cyg X-1 being a black hole. HDE 226868 might be undermassive for its spectral type, which would make Cyg X-1 less massive than previously calculated. In addition, uncertainties in the distance to the binary system would also influence mass calculations. All of these uncertainties can make a case for Cyg X-1 having only 3 solar masses, thus allowing for the possibility that it is a neutron star.

Nonetheless, there are now about 10 binaries for which the evidence for a black hole is much stronger than in Cygnus X-1. The first of these, an X-ray transient called A0620-00, was discovered in 1975, and the mass of the compact object was determined in the mid-1980's to be greater than 3.5 solar masses. This very clearly excludes a neutron star, which has a mass near 1.5 solar masses, even allowing for all known theoretical uncertainties. The best case for a black hole is probably V404 Cygni, whose compact star is at least 10 solar masses. With improved instrumentation, the pace of discovery has accelerated over the last five years or so, and the list of dynamically confirmed black hole binaries is growing rapidly.

What about all the Wormhole Stuff?

Unfortunately, worm holes are more science fiction than they are science fact. A wormhole is a theoretical opening in space-time that one could use to travel to far away places very quickly. The wormhole itself is two copies of the black hole geometry connected by a throat - the throat, or passageway, is called an Einstein-Rosen bridge. It has never been proved that worm holes exist and there is no experimental evidence for them, but it is fun to think about the possibilities their existence might create.

Can You Give Me Some More References?

There is quite a bit of black hole theory out there. For more information on it, try these books:

1. Black Holes and Warped Spacetime - William J. Kaufmann, III
2. Lonely Hearts of the Cosmos - Dennis Overbye
3. Black Holes and Time Warps, Einstein's Outrageous Legacy - Kip S. Thorne
4. The Mathematical Theory of Black Holes - S. Chandrasekhar
5. Black Holes and Baby Universes and other Essays - Stephen Hawking
6. Universe - William J. Kaufmann, III
7. Black Holes and the Universe - Igor Novikov

MENGHITUNG KECEPATAN CAHAYA BERDASAR PETUNJUK AL QUR'AN

Kecepatan cahaya adalah kecepatan yang tercepat di jagat raya ini yaitu 299279.5 Km/det. Bisa ditentukan/dihitung dengan tepat berdasar informasi dari petunjuk AL Quran

Mungkin anda pernah tahu bahwa konstanta C, atau kecepatan cahaya yaitu kecepatan tercepat di jagat raya ini diukur, dihitung atau ditentukan oleh berbagai institusi berikut:

• US National Bureau of Standards

C = 299792.4574 + 0.0011 km/det

• The British National Physical Laboratory

C = 299792.4590 + 0.0008 km/det

• Konferensi ke-17 tentang Penetapan Ukuran dan Berat Standar

”Satu meter adalah jarak tempuh cahaya dalam ruang vacum selama jangka waktu 1/299792458 detik".

Tapi anda seharusnya tahu bahwa konstanta C bisa dihitung/ditentukan secara tepat menggunakan informasi dari kitab suci yang diturunkan 14 abad silam: Al Quran, kitab suci umat Islam.

Penemu hitungan ini adalah seorang ahli Fisika dari Mesir bernama DR. Mansour Hassab El Naby

”Dialah (Allah) yang menciptakan matahari bersinar dan bulan bercahaya dan ditetapkanya tempat-tempat bagi perjalanan bulan itu agar kamu mengetahui bilangan tahun dan perhitungan (waktu)" (QS 10:5)

”Dialah (Allah) yang menciptakan malam dan siang, matahari dan bulan. Masing-masing beredar dalam garis edarnya" (QS 21:33).

“Dia mengatur urusan dari langit ke bumi, kemudian (urusan) itu naik kepada-Nya dalam satu hari yang kadarnya seribu tahun menurut perhitunganmu."(QS 32:5)

Berdasar ayat-ayat tersebut diatas, terutama ayat yang terakhir (QS 32:5) dapat disimpulkan bahwa :

Jarak yang dicapai Sang urusan selama satu hari sama dengan jarak yang ditempuh bulan selama 1000 tahun atau 12000 bulan

C . t = 12000 . L

dimana : C = kecepatan Sang urusan

t = waktu selama satu hari

L = panjang rute edar bulan selama satu bulan

Berbagai sistem kalender telah diuji, namun “Sistem kalender bulan sidereal” menghasilkan nilai C yang persis sama dengan nilai C yang sudah diketahui melalui pengukuran

Ada dua macam sistem kalender bulan:

1. Sisyem sinodik, didasarkan atas penampakan semu gerak bulan dan matahari dari bumi.

1 hari = 24 jam

1 bulan = 29.53059 hari

2. Sistem sidereal, didasarkan atas pergerakan relatif bulan dan matahari terhadap bintang dan alam semesta.

1 hari = 23 jam 56 menit 4.0906 detik

= 86164.0906 detik

1 bulan = 27.321661 hari

Sebuah catatan tentang kecepatan bulan (v)

Ada dua tipe kecepatan bulan :

1. Kecepatan relatif terhadap bumi yang bisa dihitung dengan

rumus berikut:

ve = 2 . p . R / T

dimana R = jari-jari revolusi bulan = 384264 km

T = periode revolusi bulan = 655.71986 jam

Jadi ve = 2 * 3.14162 * 384264 km / 655.71986 jam

= 3682.07 km/jam

2. Kecepatan relatif terhadap bintang atau alam semesta. Yang ini yang akan diperlukan. Einstein mengusulkan bahwa kecepatan jenis kedua ini dihitung dengan mengalikan yang pertama dengan cosinus a, sehingga:

v = Ve * Cos a

Dimana a adalah sudut yang dibentuk oleh revolusi bumi selama satu bulan sidereal

a = 26.92848o

Jadi:

C . t = 12000 . L



Ingat !

L = v . T

C . t = 12000 . v . T



Ingat !

v = ve . Cos a

C . t = 12000 . ( ve . Cos a ) . T



Ingat !

ve = 3682.07 km/jam

a = 26.92848o

T = 655.71986 jam

t = 86164.0906 det

C = 12000 . ve . Cos a . T / t



C = 12000 * 3682.07 km/jam * 0.89157 * 655.71986 jam / 86164.0906 det

C = 299792.5 km/det



Bandingkan C (kecepatan sang urusan) hasil perhitungan dengan nilai C (kecepatan cahaya) yang sudah diketahui !

Nilai C hasil perhitungan



C = 299792.5 Km/det

Nilai C hasil pengukuran



® US National Bureau of Standards



C = 299792.4574 + 0.0011 km/det

® The British National

Physical Laboratory



C = 299792.4590 + 0.0008 km/det

® Konferensi ke 17 tentang

Ukuran dan Berat Standar



“Satu meter adalah jarak tempuh cahaya dalam ruang hampa selama 1/299792458 detik "

Kesimpulan

(dari Artikel Prof Elnaby)

“Perhitungan ini membuktikan keakuratan dan konsistensi nilai konstanta C hasil pengukuran selama ini dan juga mnunjukkan kebenaran AlQuranul karim sebagai wahyu yang patut dipelajari dengan analisis yang tajam karena penulisnya adalah Sang pencipta alam semesta.”



Dia mengatur urusan dari langit ke bumi, kemudian (urusan) itu naik kepada-Nya dalam satu hari

yang kadarnya seribu tahun menurut perhitunganmu.

Referensi:

Elnaby, M.H., 1990, A New Astronomical Quranic Method for The Determination of The Greatest Speed C

http://www.islamicity.org/Science/960703A.HTM

Fix, John D., 1995, Astronomy, Journey of the Cosmic Frontier, 1st edition, Mosby-Year Book, Inc., St Louis, Missouri

The Holy Quran online, http://islam.org/mosque/quran.htm